Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Clin Kidney J ; 17(3): sfae044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38638550

RESUMO

Sex (biologically determined) and gender (socially constructed) modulate manifestations and prognosis of a vast number of diseases, including cardiovascular disease (CVD) and chronic kidney disease (CKD). CVD remains the leading cause of death in CKD patients. Population-based studies indicate that women present a higher prevalence of CKD and experience less CVD than men in all CKD stages, although this is not as clear in patients on dialysis or transplantation. When compared to the general population of the same sex, CKD has a more negative impact on women on kidney replacement therapy. European women on dialysis or recipients of kidney transplants have life expectancy up to 44.8 and 19.8 years lower, respectively, than their counterparts of similar age in the general population. For men, these figures stand at 37.1 and 16.5 years, representing a 21% to 20% difference, respectively. Hormonal, genetic, societal, and cultural influences may contribute to these sex-based disparities. To gain a more comprehensive understanding of these differences and their implications for patient care, well-designed clinical trials that involve a larger representation of women and focus on sex-related variables are urgently needed. This narrative review emphasizes the importance of acknowledging the epidemiology and prognosis of sex disparities in CVD among CKD patients. Such insights can guide research into the underlying pathophysiological mechanisms, leading to optimized treatment strategies and ultimately, improved clinical outcomes.

2.
Biomolecules ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540715

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive decline and neuropathological hallmarks, including ß-amyloid (Aß) plaques, Tau tangles, synaptic dysfunction and neurodegeneration. Emerging evidence suggests that abnormal iron (Fe) metabolism plays a role in AD pathogenesis, but the precise spatial distribution of the Fe and its transporters, such as ferroportin (FPN), within affected brain regions remains poorly understood. This study investigates the distribution of Fe and FPN in the CA1 region of the human hippocampus in AD patients with a micrometer lateral resolution using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For this purpose, we visualized and quantified Fe and FPN in three separated CA1 layers: stratum molecular-radial (SMR), stratum pyramidal (SP) and stratum oriens (SO). Additionally, chromogenic immunohistochemistry was used to examine the distribution and colocalization with Tau and Aß proteins. The results show that Fe accumulation was significantly higher in AD brains, particularly in SMR and SO. However, FPN did not present significantly changes in AD, although it showed a non-uniform distribution across CA1 layers, with elevated levels in SP and SO. Interestingly, minimal overlap was observed between Fe and FPN signals, and none between Fe and areas rich in neurofibrillary tangles (NFTs) or neuritic plaques (NP). In conclusion, the lack of correlation between Fe and FPN signals suggests complex regulatory mechanisms in AD Fe metabolism and deposition. These findings highlight the complexity of Fe dysregulation in AD and its potential role in disease progression.


Assuntos
Doença de Alzheimer , Proteínas de Transporte de Cátions , Terapia a Laser , Humanos , Doença de Alzheimer/metabolismo , Ferro/metabolismo , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia
3.
Cardiovasc Diabetol ; 23(1): 104, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504284

RESUMO

The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Insuficiência Cardíaca , Insuficiência Renal Crônica , Humanos , Insuficiência Cardíaca/complicações , Automonitorização da Glicemia , Volume Sistólico , Glicemia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Obesidade/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Diabetes Mellitus/tratamento farmacológico , Rim , Diabetes Mellitus Tipo 2/tratamento farmacológico
4.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396632

RESUMO

Chromatin status is critical for sperm fertility and reflects spermatogenic success. We tested a multivariate approach for studying pig sperm chromatin structure to capture its complexity with a set of quick and simple techniques, going beyond the usual assessment of DNA damage. Sperm doses from 36 boars (3 ejaculates/boar) were stored at 17 °C and analyzed on days 0 and 11. Analyses were: CASA (motility) and flow cytometry to assess sperm functionality and chromatin structure by SCSA (%DFI, DNA fragmentation; %HDS, chromatin maturity), monobromobimane (mBBr, tiol status/disulfide bridges between protamines), chromomycin A3 (CMA3, protamination), and 8-hydroxy-2'-deoxyguanosine (8-oxo-dG, DNA oxidative damage). Data were analyzed using linear models for the effects of boar and storage, correlations, and multivariate analysis as hierarchical clustering and principal component analysis (PCA). Storage reduced sperm quality parameters, mainly motility, with no critical oxidative stress increases, while chromatin status worsened slightly (%DFI and 8-oxo-dG increased while mBBr MFI-median fluorescence intensity-and disulfide bridge levels decreased). Boar significantly affected most chromatin variables except CMA3; storage also affected most variables except %HDS. At day 0, sperm chromatin variables clustered closely, except for CMA3, and %HDS and 8-oxo-dG correlated with many variables (notably, mBBr). After storage, the relation between %HDS and 8-oxo-dG remained, but correlations among other variables disappeared, and mBBr variables clustered separately. The PCA suggested a considerable influence of mBBr on sample variance, especially regarding storage, with SCSA and 8-oxo-dG affecting between-sample variability. Overall, CMA3 was the least informative, in contrast with results in other species. The combination of DNA fragmentation, DNA oxidation, chromatin compaction, and tiol status seems a good candidate for obtaining a complete picture of pig sperm nucleus status. It raises many questions for future molecular studies and deserves further research to establish its usefulness as a fertility predictor in multivariate models. The usefulness of CMA3 should be clarified.


Assuntos
Biofilmes , Compostos Bicíclicos com Pontes , Cromatina , Suínos , Masculino , Animais , Citometria de Fluxo , 8-Hidroxi-2'-Desoxiguanosina , Sêmen , Reatores Biológicos , Espermatozoides , DNA/genética , Fragmentação do DNA , Dissulfetos
5.
Clin Kidney J ; 17(1): sfad212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186899

RESUMO

Background: Hyperkalemia is common among patients with chronic kidney disease (CKD) but there is scarce information on differential risk factors and outcomes for men and women. For instance, smoking has been suggested to be a risk factor for hyperkalemia, but specific analysis of the sex-specific impact of smoking on hyperkalemia in CKD is lacking. Methods: We studied serum potassium levels in 2891 participants from the NEFRONA cohort: 483 controls (47% women) and 2408 CKD patients (38% women) without prior cardiovascular disease (CVD), assessing whether smoking is a risk factor for hyperkalemia, and if hyperkalemia is associated with outcomes separately for men and women. Results: Median potassium levels and prevalence of hypo and hyperkalemia were higher in CKD participants than in controls. Serum potassium levels were higher and hyperkalemia and severe hyperkalemia more prevalent in men than in women with non-dialysis CKD (G3-G5). The highest prevalence of hyperkalemia for each gender was found in CKD G4-G5 and hemodialysis patients for men (46%) and in hemodialysis (54%) for women. Gender-specific etiological multivariate analysis identified current smoking as a risk factor for hyperkalemia only in men. Hyperkalemia was independently associated with stopping RAASi, an outcome which was more common in women. Hyperkalemia was also associated to higher risk of cardiovascular events within 4 years in men. In conclusion, hyperkalemia is common among men and women with CKD, but the prevalence, risk factors and outcomes may differ by gender. Specifically, current smoking is a driver of hyperkalemia in men.

6.
Nephrol Dial Transplant ; 39(2): 177-189, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37771078

RESUMO

Millions of people worldwide have chronic kidney disease (CKD). Affected patients are at high risk for cardiovascular (CV) disease for several reasons. Among various comorbidities, CKD is associated with the more severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This is particularly true for patients receiving dialysis or for kidney recipients. From the start of the SARS-CoV-2 pandemic, several CV complications have been observed in affected subjects, spanning acute inflammatory manifestations, CV events, thrombotic episodes and arrythmias. Several pathogenetic mechanisms have been hypothesized, including direct cytopathic viral effects on the myocardium, endothelial damage and hypercoagulability. This spectrum of disease can occur during the acute phase of the infection, but also months after recovery. This review is focussed on the CV complications of coronavirus disease 2019 (COVID-19) with particular interest in their implications for the CKD population.


Assuntos
COVID-19 , Doenças Cardiovasculares , Cardiopatias , Insuficiência Renal Crônica , Humanos , COVID-19/complicações , SARS-CoV-2 , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Diálise Renal , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia
7.
J Phycol ; 60(1): 185-194, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38156502

RESUMO

The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.


Assuntos
Cianobactérias , Percloratos , Humanos , Percloratos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Estresse Oxidativo
8.
Pharmaceutics ; 15(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140040

RESUMO

The aim of the study is to develop a population pharmacokinetic (PopPK) model and to investigate the influence of CYP3A5/CYP3A4 and ABCB1 single nucleotide polymorphisms (SNPs) on the Tacrolimus PK parameters after LCP-Tac formulation in stable adult renal transplant patients. The model was developed, using NONMEM v7.5, from full PK profiles from a clinical study (n = 30) and trough concentrations (C0) from patient follow-up (n = 68). The PK profile of the LCP-Tac formulation was best described by a two-compartment model with linear elimination, parameterized in elimination (CL/F) and distributional (CLD/F) clearances and central compartment (Vc/F) and peripheral compartment (Vp/F) distribution volumes. A time-lagged first-order absorption process was characterized using transit compartment models. According to the structural part of the base model, the LCP-Tac showed an absorption profile characterized by two transit compartments and a mean transit time of 3.02 h. Inter-individual variability was associated with CL/F, Vc/F, and Vp/F. Adding inter-occasion variability (IOV) on CL/F caused a statistically significant reduction in the model minimum objective function MOFV (p < 0.001). Genetic polymorphism of CYP3A5 and a cluster of CYP3A4/A5 SNPs statistically significantly influenced Tac CL/F. In conclusion, a PopPK model was successfully developed for LCP-Tac formulation in stable renal transplant patients. CYP3A4/A5 SNPs as a combined cluster including three different phenotypes (high, intermediate, and poor metabolizers) was the most powerful covariate to describe part of the inter-individual variability associated with apparent elimination clearance. Considering this covariate in the initial dose estimation and during the therapeutic drug monitoring (TDM) would probably optimize Tac exposure attainments.

9.
Clin Kidney J ; 16(11): 1885-1907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915899

RESUMO

Chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D) represents a major public health issue; it develops in about 30%-40% of patients with diabetes mellitus and is the most common cause of CKD worldwide. Patients with CKD and T2D are at high risk of both developing kidney failure and of cardiovascular events. Renin-angiotensin system (RAS) blockers were considered the cornerstone of treatment of albuminuric CKD in T2D for more than 20 years. However, the residual risk of progression to more advanced CKD stages under RAS blockade remains high, while in major studies with these agents in patients with CKD and T2D no significant reductions in cardiovascular events and mortality were evident. Steroidal mineralocorticoid receptor antagonists (MRAs) are known to reduce albuminuria in individuals on RAS monotherapy, but their wide clinical use has been curtailed by the significant risk of hyperkalemia and absence of trials with hard renal outcomes. In recent years, non-steroidal MRAs have received increasing interest due to their better pharmacologic profile. Finerenone, the first compound of this class, was shown to effectively reduce the progression of kidney disease and of cardiovascular outcomes in participants with T2D in phase 3 trials. This clinical practice document prepared from a task force of the European Renal Best Practice board summarizes current knowledge on the role of MRAs in the treatment of CKD in T2D aiming to support clinicians in decision-making and everyday management of patients with this condition.

10.
Mikrochim Acta ; 190(12): 493, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032374

RESUMO

Water-soluble, stable, and monodisperse palladium nanoclusters (PdNCs) were synthesized using NaBH4 as a reductant and lipoic acid as a ligand. PdNCs, measured by high-resolution transmission electron microscopy, showed a round shape and a diameter of 2.49 ± 0.02 nm. It was found that each PdNC contains 550 Pd atoms on average. These PdNCs offer high amplification as a label of biochemical reactions when inductively coupled plasma-mass spectrometry (ICP-MS) is used as a detector. In addition, PdNCs have catalytic activity on electrochemical reactions, allowing detection by linear sweep voltammetry (LSV). As a proof of applicability, a competitive immunoassay based on PdNC labels was developed for the determination of glial fibrillary acidic protein (GFAP) in human serum, comparing ICP-MS and LSV detection. GFAP is a biomarker for differentiating between patients with ischemic stroke (IS) and hemorrhagic stroke (HS). The limit of detection (LoD), corresponding to IC10 (4-parameter logistic curve), was 0.03 pM of GFAP, both by ICP-MS and LSV, being lower than the 0.31 pM LoD provided by the ELISA commercial kit. Using the error profile method, 0.03 pM and 0.11 pM LoDs were obtained respectively by ICP-MS and LSV: LoD is lower by ICP-MS due to the better precision of the measurements. The analyses of human serum samples from IS, HS, and control (CT) donors using PdNC labels and detection by ICP-MS and LSV were validated with a commercial ELISA kit (for CT donors only ICP-MS provided enough sensitivity). Results point out toward the future use of PdNCs as a label in other immunoprobes for the determination of specific proteins requiring very low LoDs as well as the development of electrochemical decentralized methodologies.


Assuntos
Paládio , Acidente Vascular Cerebral , Humanos , Proteína Glial Fibrilar Ácida , Acidente Vascular Cerebral/diagnóstico , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas
11.
Anal Bioanal Chem ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999724

RESUMO

Extracellular vesicles (EVs) are increasingly recognized as crucial components influencing various pathophysiological processes, such as cellular homeostasis, cancer progression, and neurological disease. However, the lack of standardized methods for EV isolation and classification, coupled with ambiguity in biochemical markers associated with EV subtypes, remains a major challenge. This Trends article highlights the most common approaches for EV isolation and characterization, along with recent applications of elemental mass spectrometry (MS) to analyse metals and biomolecules in EVs obtained from biofluids or in vitro cellular models. Considering the promising capabilities of elemental MS, the article also looks ahead to the potential analysis of EVs at the single-vesicle and single-cell levels using ICP-MS. These approaches may offer valuable insights into individual characteristics of EVs and their functions, contributing to a deeper understanding of their role in various biological processes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37780950

RESUMO

Apical hypertrophic cardiomyopathy (ApHCM) can result in the formation of a left ventricular apical aneurysm and progressive myocardial fibrosis, which is associated with a worse prognosis. We present the case of a 76-year-old man previously diagnosed with ApHCM seven years ago, who has been under clinical follow-up. Serial cardiac magnetic resonance (CMR) imaging was performed in 2013 and 2020 due to suspected apical aneurysm formation based on echocardiographic evaluation. The 2020 CMR imaging revealed an increase in myocardial fibrosis observed through late-gadolinium enhancement images and, for the first time, a small apical aneurysm that was not clearly visualized on two-dimensional echocardiography. The time course leading to the development of an ApHCM aneurysm is not well-defined and may impact the clinical course.


La miocardiopatía hipertrófica apical (MCHap) puede provocar la formación de un aneurisma apical del ventrículo izquierdo (LV) y una fibrosis miocárdica progresiva que se relaciona con un peor pronóstico. Se presenta el relato de un paciente de 76 años con diagnóstico previo de MCHap hace siete años en seguimiento clínico. Se realizó una resonancia magnética cardíaca (RMC) seriada en 2013 y 2020, ante la sospecha de formación de aneurisma apical mediante ecocardiografía. Las imágenes RMC del 2020 demostraron un aumento de la fibrosis miocárdica mediante imágenes de realce tardío con gadolinio y, por primera vez, un pequeño aneurisma apical que no fue definido en forma precisa en la ecocardiografía bidimensional. El tiempo de progresión hasta el desarrollo del aneurisma en la MCHap no está claramente definido y puede relacionarse con cambios en el curso clínico.

13.
Clin Kidney J ; 16(10): 1656-1663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37779839

RESUMO

Background: Up to 50-60% of patients with diabetes have non-diabetic kidney disease (NDKD) on kidney biopsy. Diabetic retinopathy (DR) is a microvascular complication of diabetes frequently associated with diabetic nephropathy (DN). The objective of the current study was to investigate the kidney outcomes and survival in patients with biopsy diagnoses of DN and NDKD according to the presence of DR. Methods: We conducted an observational, multicentre and retrospective study of the pathological findings of renal biopsies from 832 consecutive patients with diabetes from 2002 to 2014 from 18 nephrology departments. The association of DR with kidney replacement therapy (KRT) or survival was assessed by Kaplan-Meier and Cox regression analyses. Results: Of 832 patients with diabetes and renal biopsy, 768 had a retinal examination and 221/768 (22.6%) had DR. During a follow-up of 10 years, 288/760 (37.9%) patients with follow-up data needed KRT and 157/760 (20.7%) died. The incidence of KRT was higher among patients with DN (alone or with NDKD) and DR [103/175 (58.9%)] than among patients without DR [88/216 (40.7%), P < .0001]. The incidence of KRT was also higher among patients with only NDKD and DR than among those without DR [18/46 (39.1%) versus 79/331 (23.9%), P < .0001]. In multivariate analysis, DR or DN were independent risk factors for KRT {hazard ratio [HR] 2.48 [confidence interval (CI) 1.85-3.31], P < .001}. DN (with or without DR) was also identified as an independent risk factor for mortality [HR 1.81 (CI 1.26-2.62), P = .001]. Conclusions: DR is associated with a higher risk of progression to kidney failure in patients with histological DN and in patients with NDKD.

15.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723209

RESUMO

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Assuntos
Lamina Tipo A , Macrófagos Alveolares , Animais , Camundongos , Lamina Tipo A/genética , Membrana Nuclear , Pulmão , Envelhecimento/genética , Instabilidade Genômica
16.
Nanomaterials (Basel) ; 13(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764569

RESUMO

The automotive sector is demanding higher specifications to achieve maximum efficiency; in this sense a new generation of lubricants with higher thermo-oxidative stability and superior tribological properties is being explored. The formulation of nanolubricants based on the nature of different nanomaterials is one of the most recent approaches, with several gaps to cover, such as dispersion stability, related to the compatibility of proposed nanomaterials with conventional additives and baseoils used in lubricant formulation. This study evaluated the effect of ZnO nanomaterial dispersed in a commercial engine oil using two different approaches; the use of surfactant and nanomaterial surface functionalization to promote higher stability and lower cluster size. Experimental evidence shows a synergetic effect between the tribological protection mechanism and the antioxidant properties in the lubricant. The effect of nanoparticle cluster size, functionalization level, and nanomaterial content are presented.

17.
An. R. Acad. Nac. Farm. (Internet) ; 89(3): 265-285, Juli-Sep. 2023. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-226785

RESUMO

Los LYTACs (LYsosome TArgeting Chimeras) son una novedosa estrategia farmacológica basada en la degradación dirigida de proteínas extracelulares y transmembrana. Su mecanismo de acción se basa en la utilización de un receptor de membrana para internalizar a una proteína diana y promover su degradación lisosomal. Hasta la fecha, su desarrollo se ha basado en el uso de anticuerpos para la unión a la proteína diana, lo cual presenta ciertas desventajas desde el punto de vista farmacocinético y sintético. El objetivo de este trabajo es diseñar un LYTAC capaz de inducir la degradación selectiva de MMP-2 (LYTAC-MMP2), una metaloproteasa de la matriz que se encuentra sobreexpresada en diversos tipos de cáncer. LYTAC-MMP2 está formado por un ligando del receptor de manosa-6-fosfato independiente de cationes (CI- MPR) y un inhibidor selectivo de MMP2 previamente descrito. Se han empleado métodos computacionales de modelado por homología, docking y dinámica molecular para estudiar el receptor CI-MPR y su mecanismo de internalización, así como para la comparación del comportamiento dinámico libre en agua de un ligando de CI-MPR descrito en la bibliografía y el LYTAC-MMP2.(AU)


LYTACs (LYsosome TArgeting Chimeras) are a novel pharmacological strategy based on the targeted protein degradation of extracellular and transmembrane proteins. Their mechanism of action is based on the use of a membrane receptor to internalize a target protein and mediate its lysosomal degradation. To date, its development has been focused on the use of antibodies for target binding, which has certain disadvantages from the pharmacokinetic and synthetic point of view. The aim of this work is to design a LYTAC capable of inducing the selective degradation of MMP-2 (LYTAC-MMP2), a matrix metalloprotease that is overexpressed in many types of cancer. LYTAC-MMP2 consists of a cation-independent mannose-6-phosphate receptor (CI-MPR) ligand and a selective MMP-2 inhibitor developed by our research group. Computational methods of homology modelling, docking and molecular dynamics have been used to study the CI-MPR receptor and its internalization mechanism, as well as for the comparison of the dynamic behaviour in water of a CI-MPR ligand described in the literature and LYTAC-MMP2.(AU)


Assuntos
Humanos , Simulação de Dinâmica Molecular , Transporte Proteico , Metaloproteases , Manose-6-Fosfato Isomerase
18.
J Pathol ; 261(3): 309-322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650295

RESUMO

Rapidly progressive/crescentic glomerulonephritis (RPGN/CGN) involves the formation of glomerular crescents by maladaptive differentiation of parietal epithelial cells that leads to rapid loss of renal function. The molecular mechanisms of crescent formation are poorly understood. Therefore, new insights into molecular mechanisms could identify alternative therapeutic targets for RPGN/CGN. Analysis of kidney biopsies from patients with RPGN revealed increased interstitial, glomerular, and tubular expression of STING1, an accessory protein of the c-GAS-dependent DNA-sensing pathway, which was also observed in murine nephrotoxic nephritis induced by an anti-GBM antibody. STING1 was expressed by key cell types involved in RPGN and crescent formation such as glomerular parietal epithelial cells, and tubular cells as well as by inflammation accessory cells. In functional in vivo studies, Sting1-/- mice with nephrotoxic nephritis had lower kidney cytokine expression, milder kidney infiltration by innate and adaptive immune cells, and decreased disease severity. Pharmacological STING1 inhibition mirrored these findings. Direct STING1 agonism in parietal and tubular cells activated the NF-κB-dependent cytokine response and the interferon-induced genes (ISGs) program. These responses were also triggered in a STING1-dependent manner by the pro-inflammatory cytokine TWEAK. These results identify STING1 activation as a pathological mechanism in RPGN/CGN and TWEAK as an activator of STING1. Pharmacological strategies targeting STING1, or upstream regulators may therefore be potential alternatives to treat RPGN. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Nefrite , Humanos , Camundongos , Animais , Glomerulonefrite/genética , Rim/patologia , Glomérulos Renais/patologia , Doença Aguda , Citocinas/metabolismo
19.
Clin Kidney J ; 16(8): 1187-1198, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37529652

RESUMO

In the EMPA-KIDNEY (The Study of Heart and Kidney Protection With Empagliflozin) trial, empagliflozin reduced cardiorenal outcomes by 28% (hazard ratio 0.72; 95% confidence interval 0.64-0.82; P < .0001) in a diverse population of over 6000 chronic kidney disease (CKD) patients, of whom >50% were not diabetic. It expanded the spectrum of CKD that may benefit from sodium-glucose cotransporter 2 (SGLT2) inhibition to participants with urinary albumin: creatinine ratio <30 mg/g and estimated glomerular filtration rate (eGFR) >20 mL/min/1.73 m2 or even lower (254 participants had an eGFR 15-20 mL/min/1.73 m2). EMPA-KIDNEY was stopped prematurely because of efficacy, thus limiting the ability to confirm benefit on the primary outcome in every pre-specified subgroup, especially in those with more slowly progressive CKD. However, data on chronic eGFR slopes were consistent with benefit at any eGFR or urinary albumin:creatinine ratio level potentially delaying kidney replacement therapy by 2-27 years, depending on baseline eGFR. The representation of diverse causes of CKD (>1600 participants with glomerular disease, >1400 with hypertensive kidney disease, >450 with tubulointerstitial disease and >600 with unknown cause) was higher than in prior SGLT2 inhibitor trials, although polycystic kidney disease was excluded. Around 15% (almost 1000) of participants were not on renin-angiotensin system blockade. The clinical characteristics of the cohort differed from DAPA-CKD (A Study to Evaluate the Effect of Dapagliflozin on Renal Outcomes and Cardiovascular Mortality in Patients With Chronic Kidney Disease), as did the frequency of individual components of the primary outcome in the placebo arm. Thus, rather than compare EMPA-KIDNEY with DAPA-CKD, the results of both trials should be seen as complementary to those of other SGLT2 inhibitor trials. Overall, EMPA-KIDNEY, a recent meta-analysis and post hoc analyses of participants with type 2 diabetes mellitus (T2DM) but no baseline CKD in other trials, indicates that SGLT2 inhibitor treatment will benefit an expanded CKD population with diverse baseline albuminuria or eGFR values, presence of T2DM or cause of CKD, as well as providing primary prevention of CKD in at least the T2DM setting.

20.
Anal Chem ; 95(35): 13322-13329, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566513

RESUMO

An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell-inductively coupled plasma-time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment.


Assuntos
Metais , Humanos , Espectrometria de Massas/métodos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...